If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=850
We move all terms to the left:
2x^2+3x-(850)=0
a = 2; b = 3; c = -850;
Δ = b2-4ac
Δ = 32-4·2·(-850)
Δ = 6809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{6809}}{2*2}=\frac{-3-\sqrt{6809}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{6809}}{2*2}=\frac{-3+\sqrt{6809}}{4} $
| 9x+14=23 | | 12y+10-y=54 | | 5(x−3)−6(x−2)=8x+2 | | X2-10x-39=0 | | 6x+8=3x-15 | | 29.50u+548=2,023 | | 8-4(3-x)=8 | | 5(x−3)−6(x−2)=8x+ | | -8(1-7v)-2=-178 | | 9(h-4)=72 | | 2x^2+21x-7.9=0 | | x+x+4x-9=3 | | 21=7+2h | | 45c+60=285 | | -7-n+7=16-3n | | -|4x-16|=-64 | | 12/10=18/x | | -2(5s-2)-4=-2(7s+2)-3 | | X2+7x=18 | | 8=6d-4 | | -1/5=-5/7+y | | 7×+7y=7(×+y) | | 1/4+x=1/3+x-2 | | 11x-8+19-2=5 | | 8+c/2=-7 | | 12(2x-5)=24 | | x+1,Y=x-4 | | 4x-7x+5=20 | | 6-6x=-2x+5) | | x+1/4=1/3-2 | | 33n+100=5000 | | (2xx)+(2x7)=36 |